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AUTHOR'S SUMMARY

The author has chosen two aspects, namely assessment by calculation and the

dynamics of composite materials.

In the first part, the theoretical studies are reviewed, in particular

various methods for evaluating elastic constants (boundary methods using

variational calculation, methods using Airy stress function, elastodynamic
methods) and recent methods of calculation for multilayers in the plastic state.
Finally, a critical study of the various theories available for the propagation
of waves and vibrations in composite materials is made (equivalent homogeneous
media theory, microstructure theory, mixture theory, theory based on asymptotic

development, etc).

In the second part, some experimental researches are reviewed for the
calculation of elastic constants in micropolar elasticity under a static and

dynamic regime. The mechanical characteristics of composite materials are
examined along with the corresponding experimental techniques (vibration of rods,

ultrasonics, etc).
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INTRODUCTION

During the past five years, special composite materials - long fibres, in

particular - have been developed for the specific needs of the aeronautical and

space industry. In other sectors of industry more and more use is being made of

these materials as complements to known metallic materials and plastics. These

products are used each time it is desired to blend high mechanical performance

with lightness of structure or of mechanical parts.

We are in a phase where ability is developing very fast, and often, in the

recent past, it has outstripped knowledge. Around 1960, this situation was an

important factor for inciting researchers. It became transformed, very rapidly,

by a veritable explosion of studies and researches, some theoretical, others

experimental, in all fields. It is sufficient to peruse the technical reviews in

applied mechanics to become aware of this activity.

This interest, which borders on infatuation, is surely explained by the

desires of engineers and technicians to fill in their basic knowledge, which is

often confined to conventional materials. In our opinion it is also explained by

the fact that composite materials now stand at a privileged crossroads, to which

a large number of scientific disciplines are converging. This situation, unique

in the history of materials, is a very happy one and quite rightly favours the

development of inter-disciplinary studies, as Fig I shows.

In fact, quantum mechanics, which studies periodic lattices, has studies

which can be transposed into the field of composite materials1 '2  Thus, quite
3recently Kohn et al have presented the results of original studies in this field,

with a variational formula only slightly known in mechanics. Geology, which is

used to treating geological layers in seismology, has studies which are capable

of being extrapolated to composite materials. In this field are the works of
4 5 6Jardetzky , Brekhovskikh and Postma on the propagation of waves in stratified

media.

The physics of metals and viscoelastic materials, together with rheology in

general, are, naturally, of great interest in this field, with the focus on new

composite materials, such as orientated eutecties and high diffusion fibrous

materials. They can give to the composite materials specialists a certain number

of experimental results concerning polyphase materials (polycrystalline metals,

sequenced polymers, amongst others), as Mason and Skimin 7 show. In return,

recent studies on composite materials (periodic or random) could shed a new light
C

on the interpretation of these results (interpretation ot multiple peaks of

internal friction, wave attenuation, etc).

FRECEDlN PAGE BL AMk-NOT FI IAn
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Acoustics and optics have both developed, in parallel, numerous studies on

composite materials. They supply reseaichers with numerous methods of investi-

gation, ranging from the simplest to the most sophisticated (for example, holo-

graphic interferometry). On the other hand, composite materials can form special

filters for use in acoustics.

Biomechanics, which is an expanding field, can supply a variety of natural,

anisotropic, composite materials (particularly bones) which are impervious or

porous. In return, it is not impossible, in the near future, that there will be

a development in the use of composite materials, compatible with human tissues,

for the fabrication of prosthesis or orthesis itrei,,.

Finally, it should be noted that there is a growi.g j: : t.

matics and theoretical mechanics, in composite materials which art L.ittit-

periodic or which have random distribution. During the past ten years there has

been an outburst of various studies on such media, in all directions. Mathe-

matical physics methods also find a rich field there.

Taking into account the multiple aspects which composite materials offer,

and within the scope of the present, informal report, discussion will be limited

to some theoretical and experimental studies.

For the former, two aspects will be examined, assessment calculations and

the propagation of waves and vibrations in composite materials. This done, I am

very conscious of leaving aside many sectors whose importances are at least equal

to those of the chosen areas.

2 ASSESSMENT CALCULATIONS

The purpose of the assessment calculations is to supply elastic or visco-

elastic constants of composite materials. In the plastic region (or at breakage)

they allow calculation of the characteristics of the boundary surface. The idea

is to replace the real material by an equivalent, homogeneous material.

2.1 Boundary methods

Boundary methods have given a variety of formulae ranging from the simplest

to the most complicated. They are derived from known theorems relating to

elastic potential energy. Two approaches are used, one kinematically allowable,

the other one statically allowable. If the geometry of the medium can be sacri-

ficed, then the simplest formulae are those of Reuss and Voigt. However, when

the mechanical characteristics of the two constituents (or phases) of the

material are very different one from another (elastic constants and specific D

gravities) the boundaries are very elongated and divergent and of little usefulness.



2.1.1 The Hill theory

This theory 8 , arising out of the work of Kroner9 gives an improvement. It

applies, particularly, to isotropic materials with spherical inclusions.

2.1.2 The Hashin and Rosen variational methods

These authors1 0 have made an important progress in the field of assessment

calculations, concerning materials having hexagonal or random distributions of

unidirectional fibres. These fibres can be hollow or solid (Fig 2).

The representative elementary volume (R.E.V.) of the orthotropic material is

defined. In the case of a hexagonal distribution, the admissible fields are

those which produce either a constant deformation or a constant constraint in the

space contained between the hexagon (R.E.V.) and the inscribed circle of the

cross section. The problem is restored to a classical elasticity problem, in a

cylinder of radius r. with limiting conditions of the type:

u. = £..x. or F. = o..n. (1)
S oj i ij ij

Displacement on Surface density
the boundary S of forces

In this way, Hashin supplied the boundaries for the five elastic constants

in the case of hexagonal symmetry and six in the case of random distribution.

2.1.3 Variational methods using polarisation tensors

Hashin and Shtrikman have made a further improvement. Instead of mini-

mising (or maximising) the potential energy of the admissible fields, they

minimise (or maximise) a certain function U , defined on a functional space

E(V) , where V is the volume and E(V) is chosen as the product of the space

of kinematically admissible fields and the space of polarisation constraints p...
ii

a. = C0 kk + P.. (2)
ij jkZkZ ij

where aij and ckf are the constraints and the deformations and the exponent 0

refers to the comparison medium.

The originality of the method lies in the fact that U is not defined

uniquely by the material M being studied, but also by the reference material

M0 ,having the same geometry and being subjected to the same boundary conditions.

The step is similar to that adopted in electricity for the study of dielectrics.
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The statically admissible fields can also be used, together with a polarisa-

tion displacement, by prescribing a force field on S .

12
Alblas and Kuipers have generalised the results of Hashin and Strikman in

a space E (v) containing E(v) by modifying the function U

Side by side with these variational formulae, and for industrial applica-

tions, there are many assessment methods, some semi-empirical (Chamis and

Sendeckyj 13) and others which take account of faults in the composite material
14

(fibre contiguity, imperfect alignment, etc), such as that by Tsai

2.1.4 Elastostatic methods

Chevalier 15 , dealing with the hexagonal fibre network, used a representa-

tive, elementary volume, as did Hashin. He proposed the replacement of the

hexagonal (R.E.V.) contour by a circular one which maintains the percentage of

the fibres by volume. He w -ked with materials having transverse isotropy.

2.1.5 The elastodynamic method
16;

This method is advocated by Behrens as being useful for long waves

applied to a variety of periodic, composite materials (lamellar composite

materials, composite materials with anisotropic fibres or with sloping elastic

constants, composite materials with peculiar symmetry, etc). Behrens uses plane

waves in the periodic medium.

The methods given above are summarised, for comparison, in Table I, which
17

is taken from Chevalier . Fig 3 and Table 2 give some indications on three

assessment methods applied to glass fibre composite materials.

To conclude this section, it can be said that without prejudice of knowing

the elastic constants of each phase of the material and the percentage of fibres

by volume, there are now available, for materials with transverse isotropy,

methods of assessment calculation which z-e making their mark in industrial

applications. In my opinion, the finite elements, in spite of many attempts,

have not produced any significant contributions in this field.

2.2 Assessment calculations in linear viscoelasticity

The use of the correspondence principle allows the viscoelastic constants

of a material to be obtained from elasticity formulae. However, existing calcula-

tions are only true in the context of perfect adhesion between the fibres and the

matrix and do not take into account the diffraction of waves at the interfaces.
18 19

On this subject the work of Hashin and Chevalier should be noted.
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2.3 Assessment calculations in the plastic state or at breakage

20
Kelly and Davis have used them for unidirectional, composite materials.

They exanined the following three distinct processes:

(a) breakage controlled by the resistance to simple fracture along the fibre
axes;

(b) transverse resistance in a direction perpendicular to (a);

(c) pure shear resistance of the matrix.

2.3.1 The MacLaughlin approach

Limit analysis has been used with more or less success by various research-
21

ers into multilayer composite materials. MacLaughlin and Batterman have consid-

ered the extreme simplified cases (high or low percentages of fibres) which,

unfortunately, do not fall within the normal percentage range (60% fibres).

Majumdar and have attempted to state the general principles of the

application of limit analysis methods in the search for a boundary surface. Their

equations have some weaknesses.

2.3.2 The Le Nizerhy approach

Nieh23
In particular, the work of Le Nizerhy should be mentioned. He has

advocated a consistent method for enclosing the site of the mean constraint

vector by means of a lower envelope (approach through constraints) and an tipper

envelope (dual approach). In the case of a perfectly-plastic rigid system, it

requires static and kinematic approaches to the boundary surface (c assical limit

analysis). Taking into account the fragile, ductile rupture of the fibres,

Le Nizerhy was led to consider the calculation, using only the hypothesis of

convexity as criterion, and with the mathematical formalism unchanged.

The material layout takes into account the periodic distribution of fibres

both in each layer and in the resin which forms the homogeneous layers. The

loading parameters Q. are introduced as being the mean constraints (with close
i

homothetics) in a macroscopically homogeneous volume of the composite material.

The deformation velocity vector q associated with the vector Q in the

expression for the principle of virtual powers, is expressed, this latter taking

the form:

6

.tr(= v()..d (3)
02

1- 
=
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7rom the definitions of the mean quantities, 3., and d.. , can be obtained an
13 -

interior envelope with potentially supportable loading surfaces, by trying to

obtain the colvex envelope of all the calculated loadings Qi and an exterior

envelope, using a classical method of approach for the envelope of a family of

planes. Fig 4 shows an outline of how the method can be used in an application

affecting multilayer composite materials with boron fibres.

3 PROPAGATION OF WAVES AND VIBRATIONS IN COMPOSITE MATERIALS

It is in this field that a large number of theoretical studies are to be

found. In order to grade them, the first thing is to compare the wavelengths A

with respect to the dimensions of the elementary network, d , of the composite

material. If A/d is large, the behaviour of the composite material is that of

an equivalent, homogeneous material having the elastic characteristics given by

zhe assessment calculations. In this context, there is available what is known

.i!; the theory of effective moduli. It is then possible to tackle the study of

--he vibration of rods, plates and shells, on the one hand, and the propagation of

tong waves in composite materials on the other. This theory finds its limitations

lery rapidly when A/d approaches unity. It is then necessary to use more

elaborate theories which could take better into account the dispersion of waves at

higher frequencies. In this context, the theory of continuous media with micro-

structure appears to be the most promising. Another approach is that of the so-

called theory of mixtures which uses the interaction between the components of the

-omposite material. Variational methods which affect periodic networks have been

?roposed by various authors and have given rise to recent interesting improvements
24

ty Nemat-Nasser . The theory of continuous media based on asymptotic develop-

ments shoul'c also be noted.

3.1 Theory of effective moduli

i.1.1 Wave propagation

The mean constraiLnts 5 and the mean deformations T.. in a representa-

~iuve elmentirv vnumt are defined and the elastic constants of the equivalent,

1n sotropir', homogeneous medium, C. are calculated

LjkQ.

-i jk C ck (4)

In an indefinitt medium, the sgudy of wave propagation using equation (4)

does not .llow the 1ji,;r rsiin of thf waves to be taken into account. However,

I I ' " " . . . -" ." .. ... . . I I .i.C



this theory does provide a ra-id, mechanical characterisation of the medium by

ultrasonic methods using long waves.

3.1.2 Vibrations of rods and plates

A certain number of classical vibration studies for isotropic rods and

plates can be transposed to composite materials. For rods, these inciude rheMcNiven 2 5  •26 2728

work of , Le Nizerhy-Vinh-Chevalier , Vinh--Nugues
2 7 and Touratier

relating to approximate theories on rods.

It is a matter of extending the known approximate theories -f Hermann-

Mindlin, of Volterra (longitudinal vibrations), of Timoshenko's method (flexion

vibrations) and of Barr-Engstrom's29 method (torsional vibrations).

It should be noted, in passing, that in general the dispersion of waves for

the three modes of decoupled vibrations is much more pronounced for composite

materials than for isotropic ones.

This dispersion is due to the strongly anisotropic character of the medium

studied, which is shown, particularly, in the high ratio between the longitudinal

Young's modulus, E, , and the shear modulus o :

E I/P 20 to 50, instead of about 3, for isotropic materials.

Here and now, for the choice of displacement fields, polynomials of a high

degree must be used to translate, correctly, the dispersion of phase and group
27

velocities. Applying dynamic torsion to beams of rectangular cross section ,

the Saint-Venant theory, which relates to the buckling function, reaches its

limits in the study of the higher modes.

Rods (whose axes are not confounded with axes of symmetry of the material)

give rise to coupled waves. Several approximate theories exist, such as those by
. 30 31

Abarcar and Cunniff and Le Nizerhy . They all require complementary studies.

The method advocated by Mindlin 3 2 of the double series for the displacement

components should be noted.

u V=E xmxnumn n t) = 'mnlmn (5)u2 3 ix2x3ui

where x is the beam axis and t is tii.,e. The number of terms taken in equa-

tion (5) depends upon the modes of vibration studied. For plates, the well-known
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approximate theory by Mindlin has been extended to composite materials by
33

Whitney

70
Amongst the work in France should be noted that of Verchery on composite

plates in a static state. This work is capable of being extended to the dynamic

state.

3.- Theories of continuous media with discrete structures

A number of theories with microstructures have been proposed, amongst which
34 35 36

are *ie works of Mindlin and Tiersten , the theories of Toupin and Truesdell
37

anad the so-called micropolar theory of Eringen . This latter tends to general-
38

ise the other theories. A comparative study by Eringen brings out the

differences between these theories (restrictions imposed on the spatial micro-

rotation vector = le where u is the displacement vector; the
V 2kimum,k m

presence of the couple Zk per unit mass and of the acceleration u k in the

behaviour laws; omission of the micropolar rotatory inertia term; final depen-

dence of the constraint vis-A-vis the applied loads and the inertia, etc).

Most of the theories on microstructures are concerned with linear,

isotropic materials.

As regards the propagation of waves in an indefinite medium, the following

theoretical results by Eringen should be noted.

For plane waves, Fig 5 shows that in the direction of propagation, n

there is a microrotational plane wave in addition to the classical longitudinal

wave. For the microrotational wave, propagation is only possible if the

frequency exceeds a certain cut-off frequency, Fig 6.

For transverse waves, in addition to the classical transverse displacement

wave, U , Eringen has found a wave with microrotation which is orthogonal to

both th- direction of propagation, n , and the displacement U . This latter

transverse wave with microrotation only exists for frequencies greater than a

critical frequency. Below this, it degenerates into an evanescent wave attenua-

ted by distance. For surface waves, Eringen and Suhubi 38 have predicted a second

type of dispersive wave. Here, too, no experimental confirmation has yet been

put forward. Amongst the theories for discrete structures applicable to

composite materials should be mentioned two proposals, one by Hermann, Sun and
39Achenbach , known as the effective stiffness theory and the other, the

Drumheller-Bedford 4 1 theory which uses a second order approximation.

4-
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3.2.1 Theory of effective stiffness

This was developed, originally, to interpret dynamic effects such as the

dispersion of waves in stratified media (multilayers). Fig 7 represents a

rectangular disposition of unidirectional fibres in a plane cross section. In a

grid (k, Z) it is a matter of adopting series for displacements. The following

developments can be adopted fairly well in the fibre (f) and matrix (m):

u u + rf(k,£) + r sin . f(k) (fibre)~f(k') = (k) + r cos e. 2i r3i sinbrf)

m(k,.) -(kZ) f(k,£) + a sin e .m(k,k)
u. U . + a cos 0 " 2i + a3i

+ (r - a) cos . m(ki) + (r - a) sin . (ki) (6)

with r > a matrix

The physical interpretation is simple. represent overall displace-

niiments and 4n.~k£ (n = 2, 3) represent local displacements. The two types of

displacements are defined for discrete values of x 2 and x3  and are continuous

functions of the variable x I and time. Since it is not possible to satisfy,

exactly, the conditions for continuity of the displacements at the interfaces

between neighbouring cells, Sun and Achenbach suggest a continuity for the mean

displacements.

On the basis of these series developments (which use Legendre polynomials)

they have evaluated the kinetic and potential energies whose means are defined at

the fibre centres. The transition from a discrete lattice to a continuous,

homogeneous model is accomplished by defining the fields for the kinematic and

dynamic variables which are continuous for all the coordinates. Thus the energy

deformation density contains not only the effective moduli terms, shown

previously, but also terms with constants arising from combinations of the

geometric and elastic properties of each phase. The equations are obtained by

the Hamilton principle used in conjunction with the continuity relationships and

Lagrange multipliers.

As a particular case, the researchers have studied multilayer plates where

each layer is isotropic. Fig 8 shows the effective stiffness theory with a first

order approximation. It shows that for the phase velocity agreement is good forC

very low modes (number of wave k < 2 with respect to the exact theory of

Rytov 
4 0 )

-AL-



14

The model with a first order approximation translates, correctly, the

dispersion of shear modes but not the other modes. A second order approximation,

Fig 9a, gives a better approximation to the exact theory.

3.2.2 General theory of effective stiffness

As an application of the previous theories, the problem of a semi-indefinite

or finite body subjected to a permanent or transitory displacement and/or the

limiting constraint conditions, is of Ireat importance. These problems have been
41

formulated by Bedford and Drumheller4 , They can be applied to the highest order

of effective stiffness theories. These two authors introduce an external, plane

surface and systems of coordinates xi, x2  (Fig 9b) relative to a multilayer

composite material, as well as local coordinates x, f and (R, 9) whose
fk

origins are situated on the fibre axis. The displacement vector, ui  , in the

kth layer can then be written as:

fk ^fh/-f Rf =ufh( t)(
u. = i= (7)

The limiting conditions for the displacements in terms of the distribution of

specified displacement Uk (9,t) at the external boundary of the layer k are:
i

fk(-f -f~t \^fk f
= 'K O,,t) =U uk(;=t) (8)

ui xi' 2 ' t J = 0  I I

^fk ufk
Then u. and U. are developed in terms of 9 and the development is

1 i

of the same order as the development of displacement vectors in the theory

adopted.

By equalising terms in the same power of s , a set of limiting conditions

is obtained:

fk fku. (O,Ot) = U t)
0 i

*fk

U (O,O,t) = v fk M

fk

2-2
(ufkt

iH
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This procedure is direct and shows the relationship between the limiting condi-

tions and the distributions of displacements and constraints over the external

surface.

The problem of the accuracy of the effective stiffness theory, with its
41limiting conditions, has been discussed by Bedford and Drumheller . They have

shown that the microstructure theory, with a finite number of degrees of freedom,

has only limited possibilities for modelling the distributions of displacements

and constraints at the boundary.

3.3 So-called theory of mixtures, or of media with interactions

This is a matter of a theory used, originally, in geology and recently
42 43 44adapted to composite materials by Lempri~re , Bedford and Stern and Hegemier

It is assumed that each phase of the composite material is subjected to

individual deformations. The microstructure of the composite material is shown

by the interactions between the constituents. Some indications of how this

method is applied to multilayers will be given here.

By integrating the equations of movement in the deformation plane we have:

a (a) P(U) (0
ij= puit (10)

where a indicates one of the two phases of the medium, with respect to the

(a)(avariable in the direction of the thicknesses h(a) Equations are

obtained of the form:

au C) e ~ 2 u(a) e
h(a) 11 - h(a)P(a) 2uI - ) T (a)(h(a) t  (11)

ax I  t2  13 I

where the exponent e indicates a mean.

We h (CO ()
I dx (a) (12)

0

(a)and assures the continuity of the term T 13 which is asymmetrical with respect

to x (a)
3
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' ( ) ])(2) (2)

- l3(x I ,h, t) = T13 (x,h, t) = Tc3(x , t) (13)

Equations of movement are obtained, of the form:

(1) (1) (1)

11P pp 1u

D = Pca (14)

where the exponent p indicates partial constraints or displacements.

(a) (C)(W) (a) (0) (a)

P = VI1 1  p = V p (15)1l

(a) (a)(]) (2)
V = h/(h + h)

(a)
where V is the volume fraction,

(1) (2)
Pc B 

= T* /(h + h) , (16)
c 13

with

(a) (a)

UP  = uc (17)

Thus the p 6 term in equation (14) represents the transfer of the amount

of movement from one phase to another. Hence it corresponds to a volume force

equivalent to an interaction due to shear at the interfaces.

The basic problem is the determination of these interaction terms p c6  and

the equations of behaviour for each phase of the composite material. For this,

Hegemier et al 4 4 have suggested an asymptotic development as a function of x 3

for the constraints and displacements.

The equations of behaviour are of the form:

CD

L ,iA
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(1) (1) (2)

11 C12 'a x 1

(18)

(2) (I) (2)

= +  ( (,x)

which express the constraints in terms of the composite material constituents and

the displacement gradients in each phase.

Figs 10 and 11 show the phase velocities in terms of the frequency for two

types of multilayer composite materials. The agreement between theory and

practice is good for the low frequencies.

3.4 Theory of continuous media with microstructure based on asymptotic
developments

Several formulae exist for the propagation of waves, such as those of
47Hegemier and of Nayfeh

The method given by Nayfeh is of particular interest when the number of

layers exceeds three in each cell and the pattern is repeated particularly in one

direction. For lack of space, only the steps adopted for a unidirectional

problem will be given here.

(a) As in the theory of mixtures, the equation of movement is integrated with

respect to the variable x in each elementary cell (0 < a < m).

(b) By assuring the conditions of continuity between one cell and another, the

relationships are sought which give the constraints a(k)(0) and u (k)(0) , the
a a

displacements at the median plane of each layer.

(c) Next, the constraints and displacements found above are developed as

series, as functions of the local coordinate y (k) x - x (k) , where x is the

overall coordinate and x (k )  is the local coordinate in the a layer of the kth
a

cell. Thus a range of finite difference equations is obtained for the spatial

and differential coordinates with time.

(d) Then a small parameter E = A/ is introduced, where A is the total

thickness and Z is a macrodimension of the problem, which could, for example,

g represent the wave length A. When e - 0 the phase velocity obtained is that

given by the theory of homogenised, non-dispersive media.
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Amongst the approximate theories put forward up to now with models of wave

dispersion for the lowest modes, the method of asymptotic development gives a

greater accuracy than do the others.

3.5 Variational methods

Kohn3 has applied the theory of Floquet, Bloch and Brillouin to composite

materials. Lee 48 has recently reviewed various variational methods in detail.

The variational principles are developed in an integral form in a cell which

represents the representative elementary volume. The deformation energy and the

complementary energy have been used. In passing from the fibre to the matrix,

the discontinuities in certain constraints and deformations at the interfaces are

taken into account. A Rayleigh-Ritz procedure has been applied to calculate the

dispersion relationships for any propagation direction whatsoever. So far as is

known, the studies by Lee have been confined to multilayers (periodicity in one

direction). The credit for a generalisation of such methods and for an applica-

tion to several cases rests with Nemat-Nasser 24 ,4 9 who has, in addition, proposed

a dual Rayleigh coefficient (based on the constraints). For various situations

(pronounced density discontinuity, discontinuity of the elastic constants) these

variations of the coefficients show the Rayleigh coefficient to be adequate. A

new Rayleigh coefficient, based on mixed fields, appears to be very effective and

gives the upper boundaries for particular values with needing recourse to the

usual orthogonalisation of the test functions.

3.5.1 The Rayleigh displacement coefficient

This coefficient is:

= nr u ' , u ' >
AR (pu,u)

(19)

(pu,u = j Qu. v*dx

where p is the density,

u is the displacement in reduced variable,

n is the elastic coefficient,

• indicates the conjugated complex quantity,

indicates differentiation with respect to x * C
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The periodicity of the medium is expressed as:

u(I) = u(-I)e iQ  (20)

where Q is the wave number.

If L is positive, auto-associated operators, for harmonic waves we have:

Lu = - P(X) [n(x)u' ' = Xu . -j < x < j (21)

At the points x. (j = 1,2) , of discontinuity l , we should have the3

following conditions:

r(x-)u'(x-) = (x.)u'(x + ) j = I or 2

(22)

x. = lim(x. -) 0
6 -0O J

Equations (20) and (21) can be satisfied by taking for the displacement:

iM'

= Z U exp i(Q + 27a)x (23)

a=0

The method of calculation is the classical one:

A() _ 0 a= 0,±,.. .,±M' (24)

cx

When n has discontinuities or varies very rapidly, this method is

ineffective.

3.5.2 The dual Rayleigh coefficient

Assuming that:

D = R - 1- and Do u' (25)
T1 P

we have
C (R')' + Du = 0 , -I < x < (26)
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o(1) = a(-l)e i Q
, (Ra')x = (Ra') x=_eiQ (27)

The dual coefficient is:

-+M1

= (Ra', , = S exp i(Q + 2wa)x . (28)

R (Da,a)'

XR is made stationary:

aR(3)

= 0 , , I, . ,M

as*

When R = I/p is not continuous, XR is not effective.

3.5.3 A new coefficient

Taking the mixed fields a and u we obtain:

(a,u') + (u',o) + (Da,a) (29)

N =(u,v)

It can now be shown that:

XR(u) > XN (Uo) (30)

and that

X(P)- X(p ) > X if n is a constant
R N p

3.5.4 A new dual coefficient

N =(W,G') + (a',W) - (PW,W)
N (Da,a) (31)

with

R (a) > XN(O,W)

and if p is a constant:

XR(a) = (0,W) >
R N'p
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3.5.5 Improvements in the new coefficients

This has led Nemat-Nasser to propose a modification to the test functions

u and a , as in equation (22), so that the following continuity condition is

not violated.

R(x]). o(x.) R(xt). o'(x.) with j = I or 2 . (32)

Moreover, he ensures that the new test functions u and U are such that

nu' and R;' are continuously differentiable in 2 2.

For the unidimensional problem the modified functions are:

2
S (exp iQ- 1) D() exp i(Q+ 2iic) d< + D exp i(Q+ 27) d

ct.=O I2 2

..... (33)

±M9 x

a= W (exp iQ- I ( ) exp i(Q+ 2rra) d + p(E) exp i(Q+ 2Tra) d

a=O2 2

..... (34)

and a new lower boundary, X , and a new upper boundary, , are obtained at

the price of an improvement in u and o .
50

Nemat-Nasser, Fu and Minagawa have also provided boundaries for the

natural frequencies in three-dimensional problems. These researchers have made

numerous applications of the method, which indicates the interest shown in it.

Mention should be made of the work of Gotteland 5 1 who has carried out a

systematic study of the various variational formulae with a view to the applica-

tions to multilayer plates by finite elements.

3.6 Various models which take wave characteristics into account

The propagation of waves in composite materials is always accompanied by a

attenuation. This can be explained by:

(a) the periodic character of the lattice;

(b) the viscoelastic properties of the constituents;

0

(c) the diffraction and diffusion of waves by the fibres, by interfacial

.defects, by holes in the matrix, by bad fibre alignment, etc.
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Taken as a whole, the problem is, theoretically, of great complexity. In

practice, there have been only tentative, partial explanations of certain aspects

relating to wave attenuation.

3.6.1 Modelling by analogy with a continuous medium

This has been suggested by Drumheller and Sutherland 52 , using the results

obtained by Brillouin I for discrete lattices based on the Floquet-Bioch theorem

relating to the propagation of a harmonic disturbance. The wave has a periodic

dispersion spectrum. The frequency curve, in terms of the wave number R = 27/A,

where A is the wavelength, has frequency bands in which no wave can be propaga-

ted and for a given value of f there is an infinite number of values of k

The classical dispersion relationship can be used for the lattices, giving:

(kh) = (Z + 1) - (Z - 1) 2Cos (t+t) (35)

4Z cos (w +  4Z r

where Z is the ratio of the acoustic impedances of the two layers,

t+ is the sum of transit times in the elementary cell,

t is the ratio of the transit time difference to the sum of transit time,r

h is the total thickness.

By analogy with a continuous medium, the properties of this latter can be used,

and are as follows:

(i) frequencies filtered in the by-pass filter;

(ii) at almost zero frequencies, the lattice and the composite material have the

same longitudinal phase velocity. Then equation (35) is developed and

gives the relationship for the dispersion of waves from the lowest mode;

(iii) a redistribution of masses is undertaken in the lattice to adapt the

dispersive characteristics of the ideal, periodic lattice to the composite

material.

This method, which is very simple to apply, can be used to study shock

waves.

3.6.2 The Sve method

The Fourier integral has been used to simulate the remote field of

constraints near to shock wave fronts by assuming that the predominant modes are

those with the lowest frequencies. Dispersion is included by adopting a complex

wave number. Sve studies the differences and the common points between the 4
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geometric dispersion and the spatial attenuation of the waves. He uses the Airy

function.

3.6.3 Interpretation of dispersive effects by the Boltzmann relationship
54

Christensen has suggested the use of dielectric theory as a possible

approach, since the two basic mechanisms of dielectrics have a certain analogy

with those of composite materials:

(i) there is the loss due to displacement of loads which are connected,

elastically, to an equilibrium position;

(ii) there is the loss due to the transition of loads or dipoles between the

equilibrium positions, separated by a potential barrier.

According to Christensen, case (i) can give a direct characteristation of

elastic media with periodic layers and case (ii) has been transposed to a

homogeneous, viscoelastic medium.

In this way, Christensen has used this analogy to re-examine the dispersion

relationship obtained by Kohn in the form:

C2k - k4  (36)
0

where C and are parameters which express the layers and their geometries

in terms of the elastic characteristics.

He has also examined the random medium by adopting a relaxation function of

the form:

G(t) = Ge- t/ r + G0

where G, T and G are unknown parameters which are to be determined. He

obtains the attenuation in the form:

2 h 2 h 2

uh() ) CC o (pGI- p2 G2 )

n1= 2 2 (37)
4G 2G2

where C is the maximum wave velocity,max

PIP P2 are densities,

G 1 , G2 are the moduli of elasticity of the layers,

h9 h 2 are the thickness,

( is the pulse rate.
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Equation (37) allows the order of magnitudes of the attenuations of waves in

magnesium and aluminium to be remeasured.

3.6.4 Diffraction and diffusion of elastic waves

As far as I am aware, very little study has been given to this problem,

when its complexity is taken into account. It is a matter of studying the

diffusion of waves due to the frequency of fibres sunk in a matrix. Bose and
55

Mal hav2 examined the case of the transverse wave being propagated at right

angles Lo the fibres and having the parallel polarisation of the fibres. It is a

case uf random fibre distribution.

These authors have been able to evaluate the complex wave number of the

composite material. The imaginary part of the wave number is related to the

geometry of the fibre lattice. They have been able to calculate the specific

absorpcion in terms of the fibre concentration.

4 SOME EXPERIMENTAL STUDIES

4.1 Measurements of elastic constants in micropolar elasticity

4.1.1 Static measurements

It has been shown, earlier, that certain microstructure theories have been

used, successfully, in the study of w've dispersion.

A serious problem arises, namely how, within the scope of these theories,

can the elastic constants of materials be evaluated in sufficient numbers?

Experimentally, this question underlines some difficulties. In research into the

laws of behaviour in micropolar elasticity, certain attempts have been made which

merit further notice.

56
Thus Gauthicr and Jashman have made measurements on an artificial, micro-

polir micdim torm-i.d rom altiminium particles in an epoxy resin matrix. Accord inc

to Fr14 i , the behavionr,z] laws ire )I t h for"):

'' )ck i  + ( +. +  X)c.. + ''.. (38)

m . kkij + + j. (39)
_j + ,

where a.. is the constraint,ij -

El. is the deformation,

is the microrotation vector,
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mi.. is the restraining couple,

X and p are the classical Lam4 moduli, and

X, u, 6 and y are the form constants inherent in the micropolar theory
to be determined.

For an isotropic body six elastic constants have to be evaluated. From equations

(38) and (39), X has the dimensions of pressure whilst a, and y have the

dimensions of forces (couple/length).

The measurements can use well-known methods of classical elasticity

(traction, torsion, shearing, circular flexion, etc) for rods and plates. The

analysis formulae are more complex, for example in the case of traction which

gives Young's modulus and the Poisson number in the following forms:

E = (2P + X)(3A + 211 + x)(2X + 2 u + X)-

(40)A

= (2X + 2+ X)

For torsion and flexion it has been possible to demonstrate the character-

istic lengths which allow a definition of the limits within which micropolar

elasticity measurements hold good.

Gauthier has shown that in resolving three problems at the limiting

conditions he has been able to evaluate the six constants.

For shear measurement, use can be made of holographic interferometry. For

torsion, the displacements can be measured by double exposure hologram and a

strongly-coherent laser beam. These optical meLhods avoid physical contact and

hence local disturbances in the areas of interest.

4.1.2 Dynamic measurements

Certain methods of physical measurement can be used to evaluate the elastic

constants. A list of these methods is shown in Table 3.

In general, the optical methods given are concerned with short wavelengths

and can be used when the characteristic micropolar wavelengths are of the same

order of magnitude as the dimensions of the lattice (= 10-7 cm). It should be

noted that Raman spectroscopy is reserved for crystals.
57

As Askar has so rightly noted, there is a large quantity of experimental

CD results on crystals which await interpretation by theoriticians and experimental

workers in the field of continuous media.

- [J
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Amongst the experimental methods which can show up certain 'micropolar

effects' (Table 2), ultrasonics and hypersonics are very serious candidates.

4.2 Mechanical characteristics of anisotropic composite materials

The techniques for measuring the elastic constants of non-polar elastic or

viscoelastic bodies tend to increase. Particularly in the aeronautical field

there are important developments in static or dynamic experimental techniques.

Rods, plates and tubes have been used to this end. It should be mentioned that

the measurement of certain 'non-diagonal' elastic constants (that is to say which

are not situated on the diagonal of the corresponding matrix) avoids couplings

(flexion-torsion, traction-torsion, etc) in quasi-static tests. If ultrasonics

are used, it will be possible to use coupled waves whose use is more delicate
58 59 60

than decoupled waves, as Curutchary , Vinh and Garceau and Markham have

shown.

Fig 12 shows an elasticimeter with alternate flexion and torsion, which

allows Young's moduli (E.), shear moduli (pi.) and the coupling constants of

composite mateiials to be determined on samples of rectangular (or circular)

cross section. Taking into account the influence (which is not negligible) of

the rotational inertia effect (in flexion) and the shearing effect, the equations
26

of motion are of the Timoshenko type with, possibly, coupling terms . In alter-
27

nate torsion, for rectangular cross sections, warping must be taken into

account.

In other respects, the use of samples of finite length complicates

research into the natural modes, even by small amounts.

58
Fig 13 shows some experimental equipment which uses ultrasonics . Fig 14

shows the slowness (inverses of phase velocities) diagrams relating to a uni-

directional Kevlar (fibre in aromatic polyamide) composite material. It can be

seen that for an angle of incidence of more than 130, the longitudinal wave is no

longer transmitted. The composite material therefore plays the role of a very

directional spatial filter. The use of coupled waves for the evaluation of the

last 'non-diagonal' constant gives rise to Fig 15. The error perpetrated on the

value of the constant C1 313 can have a strong influence on the value of C1 133

4.3 Study of wave dispersion by ultrasonics

Propagation of expanding ultrasonic waves perpendicular to the layers has

shown both waves of low mode (acoustic branch) and those of a higher mode (so- t7'

called optical branch). Fig 16 shows that the composite material behaves like a

cut-off filter in certain frequency intervals. The effect of this property is to
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modify the frequency spectrum of the progressive wave, as is shown in Fig 17

(from Robinson and Lippelmeier 61).

The wave dispersion can be shown, easily, by using several transducers

having a range of natural frequencies.

4.4 Degeneration of ultrasonic waves

A decoupled wave, applied to a composite material, and being propagated

along a direction of symmetry of the material, can be transformed into coupled

waves (transversal and longitudinal waves). This happens if the fibres undergo

directional variations. Hence this wave transformation can be used to study

certain faults in fibre alignment (Weistman 62).

4.5 Geometric and viscoelastic dispersion

Even in an indefinite medium formed from unidirectional fibres, the

geometrical dispersion of the waves can be explained by fibre size (which behave

as wave guides) and by their periodicity. The viscoelastic type of dispersion is

due to the matrix (often of resin). These two types of dispersion exist together

and can either act in the same sense or can neutralise each other, depending upon
58,5 9

the modes

4.6 Elastic waves in limited media

63
The study of surface waves , of plate waves, of Love waves (surface waves

with transverse polarisation which are propagated between a substrate and a layer)

and of Stoneley waves (interface waves) has not given rise, as far as I am aware,

to theoretical and experimental studies on composite materials. The studies

would certainly be more refined than those done on homogeneous, isotropic media

but they could lead to very interesting applications, particularly in the study

of adhesion between the layers of composite materials.

4.7 Evidence of special waves related to the micromorphic nature of the medium

Section 3.3 drew attention to particular waves with microrotation

(longitudinal or transverse waves). As far as I am aware, these waves have not

yet been demonstrated in the ultrasonic region. Special transducers will have to

be designed to show this effect.

4.8 Shock waves

These are the ones most used for composite materials. Various methods have
64 65

been adopted, such as those of Whittier and Peck Sve and Okubo Tauchert and
66

Moon The same techniques are used as for conventional solids. Amongst others,

.2t
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these include methods using a mechanical projectile, explosive charges, shock

waves in a gas and waves in a shock tube. The shock wave is propagated in the

composite material and detection of the wave is done on the opposite face by a

capacitative displacement pick-off, Fig 18. Wire resistance strain gauges can be

embedded in the composite material to record the waves at various points.

Large amplitude transitory waves can be generated by the 'flying plate

projectile' technique. This plate is maee from a homogeneous material, mechanical

and polished to form the head of the projectile, which is launched by a gas gun.

The composite, in the form of a thick block, is attached to two adaptors

('buffers') which serve as connectors and which have been aligned, previously,

with respect to the flying plate. Displacement measurements can be by the short-

circuit contact method.

Piezo-electric crystals can be used or a laser interferometer (Michelson,
67with Doppler effect) which measures the displacement through a window

Amongst the theories given earlier, it is the theory of media with inter-

action which is seen to be the most successful in the study of shock waves

(equation (18)). The slower progress with the other theories is explained by the

fact that these latter contain parameters from undetermined behavioural laws.

The evaluation of these constants (or functions) by analytical or experimental

methods is very critical, although certain attempts (such as those mentioned in

section 4.1) are promising. Fig 19 shows the good agreement between theory and

experiment in a shock test on carbon-phenolic resin composite materials.

4.9 Mechanical tests on bones

Bones are really biological composite materials. Experimental and theor-

etical studies devoted to composite materials can be transposed to the

biomechanics of solids.

The anisotropy of bones is very pronounced and, moreover, is often compli-
68

cated by a range of elastic constants. Guynemer has made measurements to give

the mechanical characteristics of bones.

Within this field, subsequent special studies should take into account the

specific characteristics of bones. Rayleigh waves in cylinders could be used to

study cortical layers.

5 CONCLUSIONS

Taking into account the fractional aspects of the composite materials
c

considered here, it is difficult to draw any firm conclusions. At best, it can
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be said that in theory numerous formulae can be found for the study of waves and

vibrations. The most simple versions of the theory of elasticity in microstruc-

tures, known as the effective stiffness theory, are capable of being used with

success in multilayer composite materials. Variational methods are very

promising. The same is true of asymptotic methods and the theory of media with

interaction.

To my mind, the variety of theories available could cover all the experi-

mental requirements without the necessity for further development. Any lack is

with the experimenters, because the absence of exact solutions in numerous

problems requires experimentation to decide between the approximate theoretical

solutions proposed. It is likely that more and more they will be forced to use

theories with microstructures. The use of multiple scales, one over all and the

other for the elementary lattice, is an approach which compels recognition, more

and more, to show up certain fracture or delamination phenomena which are of a

microstructural order. To this end, attempts to remain within the framework of

the classical theory of continuous media are already reaching their limitations.

A more careful study of the field of constraints by means of a microstructure

theory, of higher order than the existing ones, should assist experimenters to

give a better explanation of the phenomena which arise at the matrix-fibre

interface level.

Various physical methods (in particular optical methods and those using

very high frequency ultrasonics) have not been used for composite materials.

These new methods, as yet little used by engineers, could be capable of explain-
37

ing certain acoustic phenomena already predicted, theoretically, by Eringen

Hence composite materials offer a wide field of choice for interdisciplin-

ary work between physicists and engineers.

Finally, at the calculation levol, the question is to know whether or not

thk, various existing theories can produce numerical solutions which are more

tective than those obtained by direct examination of material in finite

elements.

IT
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Table I

SUMMARY OF THE ASSESSMENT CALCULATION METHODS, TAKEN FROM CHEVALIER

Nature Nature of
of the Author the composite Advantages Disadvantages
method material

Isotropic. Limits indepen- Limits too wide
Slightly dent of material if the phases
different geometry. Docu- are different

Hill characteristics mentary results.

Any interfacial
bonds. Pedago-

Variational gical interest

(limits for Transverse Use of material Relatively
modules) Hashin- isotropic geometry. Docu- complicated

mentary results calculations

Isotropic (and Limits closer Demonstration
Hashin- even multi- to those given difficult,
Shtrikman phase) by Hill needing calculus

of variances

Tetragonal Applicable to a Needs a large
Pickett, orthotropic or large number of computer. Numer-
Leissa transverse materials. ical results.
and isotropic Rigorous method Long calcula-
Clausen tions, errors

possible
Elasto-

static Transverse Very simple Approximation of

isotropic documentary the limiting
Chevalier- results. conditions. Only
Vinh Possible exten- applicable to

sion to the transverse

viscoelastic isotropic
region materials

Anything, but Very simple Transposition to
but must be documentary the viscoelastic

Elasto- Behrens periodic results. region difficult.
dynamic Applicable to Inapplicable to

a large number short wave case
of materials

* 0
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Table 2

DIFFERENT VALUES OF THE ELASTIC MODULI OF A
SILICON-PHENOLIC RESIN COMPOSITE MATERIALS

WITH 63% OF FIBRES (UNITS daN/mm 2 )

Chevalier- Pickett Behrens 6  Ultra-sonic
CijkY. Vinh 17  solution solution measurements

solution Vinh

C 1616 1684 1651 1740 ± 30

CI122 718 667 683 756 ± 50

C1132 569 571 569 680 ± 80

C33 33  5140 5141 5142 4200 ± 100

C23 23  515 519 515 570 ± 12

C1212 449 509 483 492 ± 10

Fibre: E = 7500 daN/mm 2 . v2 = 0.2

Matrix: E = 371 daN/mm 2 I = 0.34

C
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Table 3

SOME POSSIBLE METHODS FOR PHYSICAL MEASUREMENTS

Physical methods Remarks

X rays

Neutron diffraction Measurements in K..
ij

Measurement of specific heat

Transparent bodies
Infrared spectroscopy Measurements of K..

ij

Transparent bodies
Raman spectroscopy Measurements of K..

1j

Measurements of C and Ki coupling terms.Ultra- and hyper-sonicsik2

Coupling between translation and molecular modes

Crystals. Faraday effect, rotational ability (?)
Brillouin diffusion Coupling between the subdued optical mode and

acoustic phenomena

For anisotropic, micropolar media the elastic constants are defined by
the expression for deformation energy:

W = C+ Kij (ri - i) + ijkeij(r - k)

where e.. = infinitesimal deformation
1]

r. = e. (u - u ) = macrorotation
1 imn n,m m,n

I. = microrotationI

e. = permutation tensor
imn

C
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Cthe vibrations. Determination of Coulomb moduli. The
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Curves DandE: radiation diagrams (velocity vectors) for quasi-
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